The Search for Extrasolar Planets:

Statistical Signal Processing Aspects

Shay Zucker, Dept. of Geophysics, TAU

- Preliminaries
- Extrasolar Planets
- Radial Velocities
- Transits
- Future prospects and challenges

Basic Terminology

Star: large gaseous ball, emitting energy (thermonuclear fusion)

Planet: a much smaller ball, usually orbits a star

Our topic today: planets orbiting other stars, a.k.a. *extrasolar planets* a.k.a. *exoplanets*

The Solar System: the Sun, 8 planets, comets, asteroids etc.

Galaxy: a system comprising ~10¹¹ stars

• The holy grail: Life

- Better understanding of the Solar System
- Better understanding of star formation
- Basic science

Is it that difficult?

Induced Stellar Motion ('Wobble')

- Newton's 3rd law (attraction is mutual)
- Planet performs an elliptic motion
- Star should also
- Stellar motion on the celestial sphere is too small to detect.

Stellar spectrum

Doppler shift

Radial velocity

The stellar spectrum provides information about chemistry, temperature, rotation, stratification

Detection by Radial Velocity (RV)

- Periodic variation may suggest a planet
- Mass can be inferred from period and amplitude
- First planet: Mayor & Queloz (1995)

RV signal (circular orbits)

RV signal (eccentric orbits)

P - period $T_0 - \text{time of periastron}$ e - eccentricityK - semi-amplitude $\omega - \text{argument of periastron}$ $\gamma - \text{RV of c.o.m.}$

 $K = \frac{2\pi a \sin i}{P \sqrt{1 - e^2}}$ **Kepler Equation:** $E - e \sin E = \frac{2\pi}{P} (t - T_0)$ $\tan\left(\frac{\theta}{2}\right) = \sqrt{\frac{1+e}{1-e}} \tan\left(\frac{E}{2}\right)$ $RV = K \cos(\theta + \omega) + Ke$

RV signal (eccentric orbits)

16 Cyg B

70 Vir

e = 0.63

Cochran et al. 1997

HD80606

Naef et al. 2001

Idiosyncrasies of RV Time Series

- Sampling: sparse and irregular
 - Sampling times do tend to be at night
- Eccentricity introduces strong harmonics
- Multiple planets more than one periodicity
- Stellar processes introduce colored noise
 - Quasi-periodicities as well

RV Analysis – Common Practices

- Detection: Lomb-Scargle periodogram
 - My own recent contribution:
 - Phase Distance Correlation Periodogram
- Noise modelled as a Gaussian Process
- Extensive use of Bayesian inference (MCMC)

Photometry: Transits

Photometry: Transits

- Inclination should be $\sim 90^{\circ}$
- Not rare as one would think...

- Simultaneously monitor many stars (using CCD)
- Extract from the CCD the apparent stellar flux
 - Many interesting aspects of image processing
 - Calibration and pre-processing quite complex

Photometry: Transits

First known transiting planet: HD 209458 b Charbonneau et al. (2000)

 $R_{\text{planet}} = 1.35 \pm 0.06 R_{\text{Jup}}$

 $\bar{\rho} = 0.35 \mathrm{g} \mathrm{cm}^{-3}$

Anatomy of a Transit

$$d = \left(\frac{R_{\text{planet}}}{R_{\text{star}}} \right)$$

$$\cong \frac{P}{\pi} \sqrt{\left(\frac{R_{\text{star}}}{a}\right)^2 - \cos^2 i}$$

Curvature at the bottom: Stellar physics ('limb darkening')

The unique geometric situation of a transit allows performing many other kinds of observations

Photometry from Space

- Earth/Sun transit depth should be ~10⁻⁴
- To maximize precision we move to space
- Kepler space telescope
 - Unprecedented precision
 - Almost uniform sampling
 - Cadence ~30 min

Provided most of the planets we know of
(~3500)

Transit Signal Idiosyncrasies

- Approximately a periodic pulse train
- Very low duty cycle:
 - Easy cases ~5%
 - Can get down to 0.01%
- Presence of additional planets can cause:
 - Additional transits with different period
 - Transit timing variations (TTV)
- Noise: colored noise + outliers + jumps
- Sampling: close to uniform but with gaps

Transit Signal Idiosyncrasies

Transit Signal Idiosyncrasies

Transits – Common Practices

- Detection: the standard tool BLS
 - (Box-Least Squares)
 - Kovács, Zucker & Mazeh (2002)
- Noise modelled as Gaussian Process
- Extensive use of Bayesian inference (MCMC)

Prospects and Challenges

- Challenge: Earth-like planets
 - Very shallow transits (depth ~10⁻²
 - Long period (~1 year)
 - Implying very little information
- Instrumentation: PLATO (cadence 25s)
- Instrumentation: E-ELT
 - Direct imaging
 - Planet spectroscopy
 - (life?...)

